Surname				Other	Names			
Centre Number					Cand	idate Number		
Candidate Signature		е						

For Examiner's Use

General Certificate of Education January 2008 Advanced Subsidiary Examination

PHYSICS (SPECIFICATION A) Practical (Unit 3)

PHA3/P

Wednesday 16 January 2008 1.30 pm to 3.15 pm

For this paper you must have:

- a pencil and a ruler
- a calculator.

Time allowed: 1 hour 45 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in the margins or on blank pages will not be marked.
- Show all working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 30.
- The marks for questions are shown in brackets.
- A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- You are expected to use a calculator where appropriate.
- You are advised to spend no more than 30 minutes on Question 1.

For Examiner's Use							
Question	Question Mark Question						
1							
2							
Total (Column 1)							
Total (Column 2) ———							
TOTAL							
Examiner's Initials							

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

Fundamenta	ıl constants a	nd valu	ies		Mechanics and Applied	Fields, Waves, Quantum		
Quantity		Symbol	Value	Units	Physics	Phenomena		
speed of light	in vacuo	c	3.00×10^{8}	m s ⁻¹	v = u + at	F		
permeability of		μ_0	$4\pi \times 10^{-7}$	H m ⁻¹	$\int_{C} \int (u+v)$.	$g = \frac{F}{m}$		
permittivity o		ϵ_0	8.85×10^{-1}	F m ⁻¹	$s = \left(\frac{u+\nu}{2}\right)t$	GM		
charge of elec		e	1.60×10^{-1}	C		$g = -\frac{GM}{r^2}$		
the Planck co		h	6.63×10^{-3} 6.67×10^{-1}	J S 1 N 2 1 2	$s = ut + \frac{at^2}{2}$ $v^2 = u^2 + 2as$			
gravitational o		G	6.07×10^{-3} 6.02×10^{23}	N m kg	2	$g = -\frac{\Delta V}{\Delta x}$		
the Avogadro molar gas con		$\frac{N_{\mathrm{A}}}{R}$	8.31	I K-1 mol-	$v^2 = u^2 + 2as$	Δx		
the Boltzman		$\frac{1}{k}$	1.38×10^{-2}	$J K^{-1}$	A(ma)	GM		
the Stefan cor		σ	5.67×10^{-8}	W m ⁻² K ⁻⁴	$F = \frac{\Delta(mv)}{\Delta t}$	$V = -\frac{GM}{r}$		
the Wien cons	stant	α	2.90×10^{-3}			$a = -(2\pi f)^2 x$		
electron rest i	mass	$m_{ m e}$	9.11×10^{-3}	l kg	P = Fv	· ·		
(equivalent to	$5.5 \times 10^{-4} \text{u}$				power output	$v = \pm 2\pi f \sqrt{A^2 - x^2}$		
electron charge/mass ratio		$e/m_{\rm e}$	1.76×10^{11}		$efficiency = \frac{power\ output}{power\ input}$	$x = A \cos 2\pi f t$		
proton rest mass (equivalent to 1.00728u)		$m_{ m p}$	1.67×10^{-2}	' kg	1 '			
` .	,	,	0.50 107	G 1 -1	$\omega = \frac{v}{\pi} = 2\pi f$	$T = 2\pi\sqrt{\frac{m}{k}}$		
proton charge/mass ratio neutron rest mass		e/m _p	9.58×10^{7}	$C \text{ kg}^{-1}$	$\omega = \frac{v}{r} = 2\pi f$	' <u>^</u>		
(equivalent to		$m_{\rm n}$ 1.67 × 10 ⁻²⁷		' kg	$a = \frac{v^2}{r} = r\omega^2$	$T = 2\pi\sqrt{\frac{l}{g}}$		
gravitational f	,	g	9.81	N kg-1	$a = \frac{1}{r} = r\omega^{-}$	(1)		
acceleration d		g	9.81	N kg ⁻¹ m s ⁻²		$\lambda = \frac{\omega s}{D}$		
atomic mass unit		u	1.661×10^{-1}	27 kg	$I = \sum mr^2$	$d\sin\theta = n\lambda$		
(1u is equivale	ent to				1	_		
931.3 MeV)					$E_{\mathbf{k}} = \frac{1}{2} I \omega^2$	$\theta \approx \frac{\lambda}{D}$		
Fundamenta	l particles				$\omega_2 = \omega_1 + \alpha t$	$_{1}n_{2} = \frac{\sin \theta_{1}}{\sin \theta_{2}} = \frac{c_{1}}{c_{2}}$		
Class	Name	Syn	ıbol	Rest energy	$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$	1		
				/MeV	1	$1n_2 = \frac{n_2}{n_1}$		
1 4	1 .				$\omega_2^2 = \omega_1^2 + 2\alpha\theta$	1		
photon	photon	γ		0		$\sin \theta_{\rm c} = \frac{1}{n}$		
lepton	neutrino	v_{e}		0	$\theta = \frac{1}{2} \left(\omega_1 + \omega_2 \right) t$			
		$ u_{\mu} $		0	$T = I\alpha$	E = hf		
	electron	e [±]		0.510999	$I = I\alpha$	$hf = \phi + E_k$		
	muon	μ^{\pm}		105.659	angular momentum = $I\omega$	$hf = E_1 - E_2$		
mesons	pion	π^{\pm}		139.576	$W = T\theta$	$\lambda = \frac{h}{p} = \frac{h}{mv}$		
		π^0		134.972	$P = T\omega$	p mv		
	kaon	\mathbf{K}^{\pm}		493.821		$c = \frac{1}{1}$		
		K^0	,	497.762	angular impulse = change of	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$		
baryons	proton	р		938.257	$angular\ momentum = Tt$			
,	neutron	n		939.551	$\Delta Q = \Delta U + \Delta W$	Electricity		
					$\Delta W = p\Delta V$ $pV^{\gamma} = \text{constant}$			
Properties o	f anarks				pv = constant	$\in = \frac{E}{O}$		
1 Toperties 0	•				work done per cycle = area	1 ∼		
Туре	Charge	Bar	yon	Strangeness	of loop	$\in = I(R+r)$		
		nun	nber			1 1 1 1		
	. 2	+	1	0	input power = calorific	$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$		
u	$+\frac{2}{3}$		-	0	value × fuel flow rate	$R_{\rm T} = R_1 + R_2 + R_3 + \cdots$		
d	$-\frac{1}{3}$	+	$\frac{1}{3}$	0	1	$\prod_{X_1 - X_1 + X_2 + X_3 + \cdots}$		
S	$-\frac{1}{2}$	+	1/2	-1	indicated power as (area of $p - V$	$P = I^2 R$		
-	3		3	•	loop) × (no. of cycles/s) ×	$\int_{-\infty}^{\infty} F \cdot V$		
Coomatrical	Lagrations				(no. of cylinders)	$E = \frac{F}{O} = \frac{V}{d}$		
Geometrical	equations				friction power = indicated	_ ~ "		
arc length = re	9				power – brake power	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$		
Ü		r			F	$4\pi\varepsilon_0$ r^2		
circumference	•	,			W O O			
area of circle:	$=\pi r^{2}$				$efficiency = \frac{W}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}}$	$E = \frac{1}{2} QV$		
area of cylinde	$er = 2\pi rh$				≈in ≥in	F = BIl		
volume of cyli	$inder = \pi r^2 h$				maximum possible	F = BQv		
area of sphere					<u> </u>	$Q = Q_0 e^{-t/RC}$		
area or somere	- 7/1/				$efficiency = \frac{T_{H} - T_{C}}{T_{H}}$, and the second		
volume of sph	4 3				1	$\Phi = BA$		

magnitude of induced emf = $N \frac{\Delta \Phi}{\Delta t}$

$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$

$$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$

Mechanical and Thermal Properties

the Young modulus =
$$\frac{\text{tensile stress}}{\text{tensile strain}} = \frac{F}{A} \frac{l}{e}$$

energy stored = $\frac{1}{2}$ Fe

$$\Delta Q = mc \Delta \theta$$

$$\Delta Q = ml$$

$$pV = \frac{1}{3} Nm\overline{c^2}$$

$$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N_A}$$

Nuclear Physics and Turning Points in Physics

$$force = \frac{eV_p}{d}$$

radius of curvature =
$$\frac{mv}{Be}$$

$$\frac{eV}{d} = mg$$

 $work\ done = eV$

$$F = 6\pi \eta r v$$

$$I = k \frac{I_0}{r^2}$$

$$\frac{\Delta N}{\Delta t} = -\lambda N$$

$$\lambda = \frac{h}{\sqrt{2meV}}$$

$$N = N_0 e^{-\lambda t}$$

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

$$R = r_0 A^{\frac{1}{3}}$$

$$E = mc^2 = \frac{m_0 c^2}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

$$l = l_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}}$$

$$t = \frac{t_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

Astrophysics and Medical Physics

 Body
 Mass/kg
 Mean radius/m

 Sun
 2.00×10^{30} 7.00×10^8

 Earth
 6.00×10^{24} 6.40×10^6

1 astronomical unit = 1.50×10^{11} m

1 parsec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} = 3.26 \text{ ly}$

1 light year = 9.45×10^{15} m

Hubble constant (H) = 65 km s⁻¹ Mpc⁻¹

angle subtended by image at eye $M = \frac{1}{2}$

angle subtended by object at unaided eye

$$M = \frac{f_{\rm o}}{f_{\rm e}}$$

$$m - M = 5 \log \frac{d}{10}$$

 $\lambda_{\text{max}}T = \text{constant} = 0.0029 \text{ m K}$

v = Hd

 $P = \sigma A T^4$

$$\frac{\Delta f}{f} = \frac{\nu}{c}$$

$$\frac{\Delta \lambda}{\lambda} = -\frac{\nu}{c}$$

$$R_{\rm s} \approx \frac{2GM}{c^2}$$

Medical Physics

 $power = \frac{1}{f}$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \text{ and } m = \frac{v}{u}$$

intensity level = $10 \log \frac{I}{I_0}$

 $I = I_0 e^{-\mu}$

 $\mu_{\rm m} = \frac{\mu}{\rho}$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

$$C_{\mathrm{T}} = C_1 + C_2 + C_3 + \cdots$$

$$X_{\rm C} = \frac{1}{2\pi fC}$$

Alternating Currents

$$f = \frac{1}{T}$$

Operational amplifier

$$G = \frac{V_{\text{out}}}{V_{\text{in}}} \qquad \text{voltage gain}$$

$$G = -\frac{R_{\rm f}}{R_{\rm 1}}$$
 inverting

$$G = 1 + \frac{R_f}{R_1}$$
 non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right) \text{ summing}$$

Turn over for the first question

Answer both questions.

You are advised to spend no more than 30 minutes on Question 1.

1 An aerofoil is designed to produce aerodynamic lift when air flows around it. An aerofoil with a symmetrical profile can only produce lift if the centre line is inclined at a non-zero angle to the incident airflow, as shown in **Figure 1**.

The lift force will increase as α increases from zero until a certain critical value is reached when the air flowing over the top surface suddenly becomes turbulent. This results in a sudden reduction in lift and the aerofoil is said to have stalled.

Figure 2 shows in top view and in side view a student's design for an aerodynamic balance to measure the lift force on a symmetrical aerofoil as α is varied. The aerofoil is fixed to a horizontal beam, pivoted near one end. When a stream of moving air is passed over the aerofoil, the lift force produced is transmitted via a lever system through a prism to an electronic balance. To ensure that the stream of air does not interfere with the balance, the aerofoil is fixed at a right angle to the beam and the arrangement is made stable using a counter-weight.

Describe a suitable procedure that the student should carry out to investigate how the lift force varies with α and explain how the results of the investigation can be used to determine an accurate value of the angle α at which the aerofoil stalls.

You should assume that the normal laboratory apparatus used in schools and colleges is available as is a blower that will produce a stream of non-turbulent air of uniform velocity.

Your answer should

- identify the quantities that should be measured and explain how these measurements will be made,
- explain how the measurements will be used to determine the angle at which the aerofoil stalls,
- list any factor(s) that should be controlled during the proposed experiment,
- identify any difficulties in obtaining reliable results that might be encountered and explain relevant procedures that will enable these difficulties to be overcome.

Write your answer to Question 1 on pages 8 and 9 of this booklet.

(8 marks)

Figure 2
Top view

Turn over ▶

 •••••
 •••••
•••••

8

Turn over ▶

There are no questions printed on this page

2 You are provided with the circuit shown in **Figure 3**, part of which is concealed from view. You are also provided with two leads that may be used to provide connections between the sockets A, B, C and D.

Figure 3

(i) Use one of the leads to connect socket A to socket D. Close switch S. Read and record the milliammeter reading, I_0 .

$$I_0 = \dots$$

(ii) Open switch S. Reposition the lead so that socket A is connected to socket B. Close switch S. Read and record the voltmeter reading, V_0 .

$$V_0 = \dots$$
 (1 mark)

Question 2 continues on the next page

(b)	Open switch S. Leaving the lead connecting socket A to socket B in place, use the additional lead to connect socket C to socket D and then close switch S. Adjust the setting of the variable resistor until the milliammeter reading is at a maximum. Read and record below the milliammeter reading, <i>I</i> , and the voltmeter reading, <i>V</i> . Read and record below further readings of <i>I</i> and <i>V</i> that correspond to seven different settings of the variable resistor.
	Open switch S when you have completed these readings.
	(4 marks)
(c)	Using the data produced in part (b), plot a graph with $(V_0 - V)$ on the vertical axis and I on the horizontal axis.
	Record below the data that you will plot on your graph.
	(8 marks)
(d)	Measure and record the gradient, G , of your graph.
(4)	Treature and record the gradient, o, or your grapm
	$G = \dots$
	(3 marks)

(e) The part of the circuit that is concealed contains a potential divider consisting of two resistors, R_T and R_B .

When socket A was connected to socket D as in part (a)(i), the circuit was equivalent to that shown in **Figure 4**.

You are provided with the emf of the dc power supply. You may assume that the power supply has negligible internal resistance.

(i)	Stating any further assumption that is relevant, deduce the resistance of R_T .
(ii)	Explain, without detailed calculation, how the resistance of $R_{\rm B}$ compares with that of $R_{\rm T}$.
	(3 marks)

maxi	ng determined readings of I and V with the variable resistor adjusted to allow mum current to flow through the milliammeter, what determined your choice of settings of the variable resistor used to produce the additional readings required
Comme	
	ose that, in order to carry out the experiment, a student is provided with an egue milliammeter of a type shown in Figure 5 .
	Figure 5
	100 d.c. 10 mA 1 o
	State a possible cause of systematic error in the readings of this type of
(i)	milliammeter.

END OF QUESTIONS

(3 marks)

There are no questions printed on this page

Copyright © 2008 AQA and its licensors. All rights reserved.