
Surname		Othe	r Names			
Centre Number			Candid	ate Number		
Candidate Signature						

General Certificate of Education June 2006 Advanced Level Examination

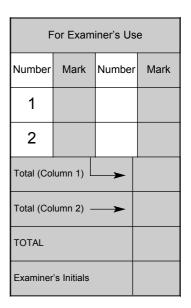
PHYSICS (SPECIFICATION A) Practical (Units 5–9)

PHAP

Wednesday 24 May 2006 9.00 am to 10.45 am

For this paper you must have:

- a calculator
- a pencil and ruler


Time allowed: 1 hour 45 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **both** questions
- Answer questions in the spaces provided.
- Show all your working
- Do all rough work in this book. Cross through any work you do not want marked.

Information

- The maximum mark for this paper is 30.
- The marks for questions are shown in brackets.
- *A Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- You are expected to use a calculator where appropriate.
- You are advised to spend no more than 30 minutes on Question 1.

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

Fundamental constants and values						
Quantity	Symbol	Value	Units			
speed of light in vacuo	c	3.00×10^{8}	m s ⁻¹			
permeability of free space	μ_0	$4\pi \times 10^{-7}$	H m ⁻¹			
permittivity of free space	ϵ_0	8.85×10^{-12}	F m ⁻¹			
charge of electron	e	1.60×10^{-19}	C			
the Planck constant	h	6.63×10^{-34}	J s			
gravitational constant	G	6.67×10^{-11}	N m ² kg ⁻²			
the Avogadro constant	$N_{\rm A}$	6.02×10^{23}	mol ⁻¹			
molar gas constant	R	8.31	J K ⁻¹ mol			
the Boltzmann constant	k	1.38×10^{-23}	J K ⁻¹			
the Stefan constant	σ	5.67×10^{-8}	W m ⁻² K			
the Wien constant	α	2.90×10^{-3}	m K			
electron rest mass	m_{e}	9.11×10^{-31}	kg			
(equivalent to 5.5×10^{-4} u)						
electron charge/mass ratio	e/m _e	1.76×10^{11}	C kg ⁻¹			
proton rest mass	$m_{ m p}$	1.67×10^{-27}	kg			
(equivalent to 1.00728u)		_				
proton charge/mass ratio	$e/m_{\rm p}$	9.58×10^{7}	C kg ⁻¹			
neutron rest mass	$m_{\rm n}$	1.67×10^{-27}	kg			
(equivalent to 1.00867u)						
gravitational field strength		9.81	N kg ⁻¹			
acceleration due to gravity	g	9.81	*** 5			
atomic mass unit	u	1.661×10^{-27}	kg			
(1u is equivalent to						
931.3 MeV)						

Fundamental particles

- Name	Symbol	Rest energy		
	•	/MeV		
photon	γ	0		
neutrino	$ u_{\rm e}$	0		
	$ u_{\mu}$	0		
electron	e^{\pm}	0.510999		
muon	μ^{\pm}	105.659		
pion	π^{\pm}	139.576		
	π^0	134.972		
kaon	K^{\pm}	493.821		
	K^0	497.762		
proton	p	938.257		
neutron	n	939.551		
	photon neutrino electron muon pion kaon	$\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $		

Properties of quarks

Туре	Charge	Baryon number	Strangeness
u	$+\frac{2}{3}$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}$	$+\frac{1}{3}$	0
s	$-\frac{1}{3}$	$+\frac{1}{3}$	-1

Geometrical equations

arc length = $r\theta$ circumference of circle = $2\pi r$ area of circle = πr^2 area of cylinder = $2\pi rh$ volume of cylinder = $\pi r^2 h$ area of sphere = $4\pi r^2$ volume of sphere = $\frac{4}{3}\pi r^3$

Mechanics and Applied Physics

Physics
$$v = u + at$$

$$s = \left(\frac{u + v}{2}\right)t$$

$$s = ut + \frac{at^2}{2}$$

$$t^2 = u^2 + 2as$$

$$F = \frac{\Delta(mv)}{\Delta t}$$

$$P = Fv$$

$$efficiency = \frac{power\ output}{power\ input}$$

$$\omega = \frac{v}{r} = 2\pi f$$

$$a = \frac{v^2}{r} = r\omega^2$$

$$I = \sum mr^2$$

$$E_k = \frac{1}{2}I\omega^2$$

$$\omega_2 = \omega_1 + \alpha t$$

$$\theta = \omega_1 t + \frac{1}{2}\alpha t^2$$

$$\omega_2^2 = \omega_1^2 + 2\alpha\theta$$

$$\theta = \frac{1}{2}(\omega_1 + \omega_2)t$$

$$T = I\alpha$$

$$angular\ momentum = I\omega$$

$$W = T\theta$$

$$P = T\omega$$

angular impulse = change of angular momentum = Tt $\Delta Q = \Delta U + \Delta W$ $\Delta W = p\Delta V$ $pV^{\gamma} = constant$

work done per cycle = area of loop

input power = calorific value × fuel flow rate

indicated power as (area of p - Vloop) × (no. of cycles/s) × (no. of cylinders)

friction power = indicated power - brake power

efficiency =
$$\frac{W}{Q_{\text{in}}} = \frac{Q_{\text{in}} - Q_{\text{out}}}{Q_{\text{in}}}$$
 $E = \frac{1}{2} QV$

maximum possible

$$efficiency = \frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$$

Fields, Waves, Quantum Phenomena

$$g = \frac{F}{m}$$

$$g = -\frac{GM}{r^2}$$

$$g = -\frac{\Delta V}{\Delta x}$$

$$V = -\frac{GM}{r}$$

$$a = -(2\pi f)^2 x$$

$$v = \pm 2\pi f \sqrt{A^2 - x^2}$$

$$x = A \cos 2\pi f t$$

$$T = 2\pi \sqrt{\frac{I}{g}}$$

$$\lambda = \frac{\omega s}{D}$$

$$d \sin \theta = n\lambda$$

$$\theta \approx \frac{\lambda}{D}$$

$$1^{n_2} = \frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2}$$

$$1^{n_2} = \frac{n_2}{n_1}$$

$$\sin \theta_c = \frac{1}{n}$$

$$E = hf$$

$$hf = \phi + E_k$$

$$hf = E_1 - E_2$$

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

Electricity

$$\begin{aligned}
&\in = \frac{E}{Q} \\
&\in = I(R+r) \\
&\frac{1}{R_{\rm T}} = \frac{1}{R_{\rm 1}} + \frac{1}{R_{\rm 2}} + \frac{1}{R_{\rm 3}} + \cdots \\
&R_{\rm T} = R_{\rm 1} + R_{\rm 2} + R_{\rm 3} + \cdots \\
&P = I^2 R \\
&E = \frac{F}{Q} = \frac{V}{d} \\
&E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \\
&E = \frac{1}{2} QV \\
&F = BII \\
&F = BQv
\end{aligned}$$

 $Q = Q_0 e^{-t/RC}$

 $\Phi = BA$

Turn over

magnitude of induced e.m.f. = $N \frac{\Delta \Phi}{\Delta t}$

$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$

$$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$

Mechanical and Thermal Properties

the Young modulus =
$$\frac{tensile\ stress}{tensile\ strain} = \frac{F}{A} \frac{l}{e}$$

energy stored = $\frac{1}{2}$ Fe

$$\Delta Q = mc \Delta \theta$$

$$\Delta Q = ml$$

$$pV = \frac{1}{3} Nm\overline{c^2}$$

$$\frac{1}{2} m \overline{c^2} = \frac{3}{2} kT = \frac{3RT}{2N_A}$$

Nuclear Physics and Turning Points in Physics

$$force = \frac{eV_p}{d}$$

$$force = Bev$$

radius of curvature =
$$\frac{mv}{Be}$$

$$\frac{eV}{d} = mg$$

 $work\ done = eV$

$$F = 6\pi \eta r v$$

$$I = k \frac{I_0}{x^2}$$

$$\frac{\Delta N}{\Delta t} = -\lambda N$$

$$\lambda = \frac{h}{\sqrt{2meV}}$$

$$N = N_0 e^{-\lambda t}$$

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

$$R = r_0 A^{\frac{1}{3}}$$

$$E = mc^2 = \frac{m_0 c^2}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

$$l = l_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}}$$

$$t = \frac{t_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

Astrophysics and Medical Physics

Body	Mass/kg	Mean radius/1
Sun	2.00×10^{30}	7.00×10^{8}
Earth	6.00×10^{24}	6.40×10^{6}

1 astronomical unit = 1.50×10^{11} m

1 parsec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} = 3.26 \text{ ly}$

1 light year = 9.45×10^{15} m

Hubble constant $(H) = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$

angle subtended by image at eye

angle subtended by object at unaided eye

$$M = \frac{f_{\rm o}}{f_{\rm c}}$$

$$m - M = 5 \log \frac{d}{10}$$

$$\lambda_{\text{max}}T = \text{constant} = 0.0029 \text{ m K}$$

v = Hd

 $P = \sigma A T^2$

$$\frac{\Delta f}{f} = \frac{\nu}{c}$$

$$\frac{\Delta\lambda}{\lambda} = -\frac{\nu}{c}$$

$$R_{\rm s} \approx \frac{2GM}{c^2}$$

Medical Physics

$$power = \frac{1}{f}$$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \text{ and } m = \frac{v}{u}$$

intensity level =
$$10 \log \frac{I}{I_0}$$

$$I = I_0 e^{-\mu}$$

$$\mu_{\rm m} = \frac{\mu}{\rho}$$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

$$C_{\mathrm{T}} = C_1 + C_2 + C_3 + \cdots$$

$$X_{\rm C} = \frac{1}{2\pi fC}$$

Alternating Currents

$$f = \frac{1}{T}$$

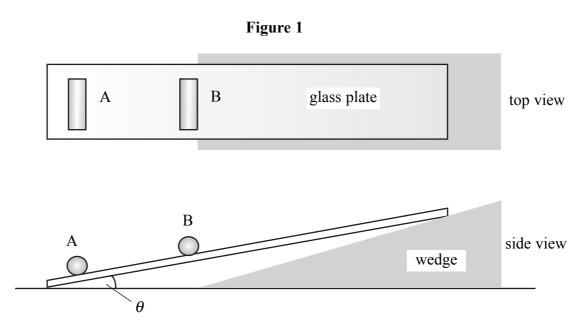
Operational amplifier

$$G = \frac{V_{\text{out}}}{V_{\text{in}}} \qquad \text{voltage gain}$$

$$G = -\frac{R_{\rm f}}{R_{\rm 1}}$$
 inverting

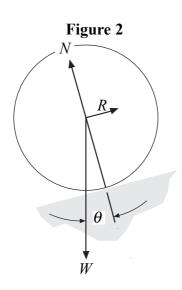
$$G = 1 + \frac{R_{\rm f}}{R_{\rm 1}}$$
 non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$
 summing


Turn over for the first question

Answer both questions.

You are advised to spend no more than 30 minutes on Question 1.


1 A student discovers a novel way of measuring the force that acts between two cylindrical bar magnets.

Two such magnets, A and B, are placed on a smooth, flat glass plate with the poles aligned so that the magnets repel one another. Magnet A is glued in place. A wedge is then introduced under one edge of the glass plate so that the plate is inclined at an angle, θ , to the desk. Magnet B, which is free to roll, comes to rest in the position shown by the views given in **Figure 1**.

The student sketches a force diagram, shown in **Figure 2**, for the forces acting on magnet B. These are

- W, the weight of the rolling magnet,
- N, the contact force **normal to** the glass plate and
- R, the repulsive force due to the fixed magnet, acting **parallel to** the glass plate. Realising that these forces are in equilibrium, the student plans to use this diagram to determine the magnitude of R.

It is suggested that R might vary as $\frac{1}{d^2}$, where d is the separation of the magnets, as shown in **Figure 3**.

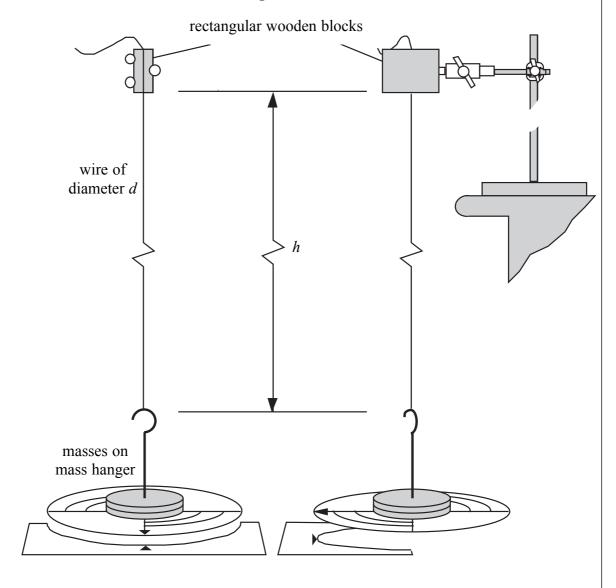
Figure 3

Design an experiment that enables the student to determine whether R varies as $\frac{1}{d^2}$.

You should assume that the normal laboratory apparatus used in schools and colleges is available. You may wish to draw a diagram to illustrate your answer.

In your answer you should:

- Identify the quantities you intend to measure and explain how you will measure them.
- Explain how you propose to use your measurements to determine if R varies as $\frac{1}{d^2}$. You may wish to draw a diagram to illustrate this part of your answer.
- List any factor(s) you will need to control and explain how you will do this.
- Identify any difficulties you might encounter in obtaining reliable results and explain how these could be overcome.

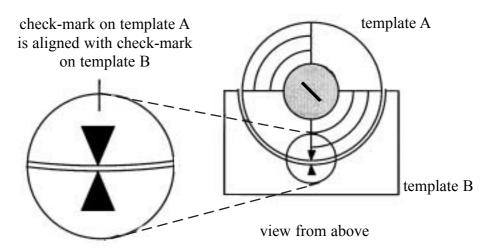

Write your answers to Question 1 on pages 8 and 9 of this booklet.

(8 marks)

2 You are to investigate the rotational oscillations of a mass suspended from a wire, as the length, h, of the wire is varied.

The arrangement of the apparatus is shown in front view and side view in Figure 4.

Figure 4


(a)	Use the micrometer screw gauge to determine the mean diameter, d , of the wire.				
	$d = \dots (1 mark)$				

MARGIN BLANK

(b) Template A is a piece of card that is trapped between the mass hanger and slotted masses. Template B is another piece of card that can be placed on the floor below the suspended mass. Printed on both templates are check marks that you should use when measuring the period of rotational oscillations of the suspended mass. Rotate template A on its own until the check-mark is pointing away from the edge of the bench. Position template B so that it is directly below the suspended mass and the check-mark is aligned with that on template A, as shown in Figure 5.

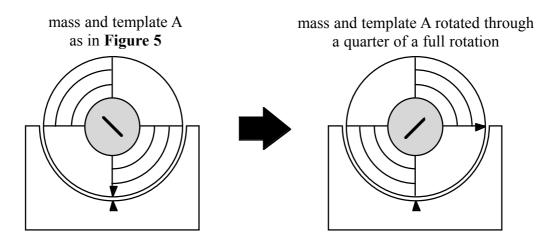

11

Figure 5

Keeping the wire vertical, rotate the stem of the mass hanger so that the suspended mass turns through approximately a quarter of a full rotation, i.e. 90°, as shown in Figure 6.

Figure 6

Release the stem of the mass hanger so that the suspended mass performs rotational oscillations.

Make suitable measurements to determine the period, T, of the rotational oscillations and the length of wire, h, as defined in **Figure 4**.

Repeat the procedure to find values of T for four smaller values of h. Record all the measurements you make on the following page.

	Measurements and observations.	
		(1
		(4 marks)
(c)	Using the grid on page 13 , plot a graph with $\log_{10} (h/m)$ on the vertical axis	and
(•)	$\log_{10}(T/s)$ on the horizontal axis.	
	Tabulate below the data you will plot on your graph.	
		(8 marks)
		(o men ns)
(d)	Measure and record the gradient, G, of your graph.	
()		
	$G = \dots$	(2 1)
		(3 marks)

(e) Theory shows that for a given length of wire, $T \propto \frac{1}{d^2}$.					
	Suppose the experiment is repeated using a wire of the same material but half the diameter. If the values of h used were the same as in the original experiment, state, without explanation, what effect this change would have on				
	(i) the values of T ,				
	(ii) the result for G .				
	(3 marks))			
(f)	It is suggested that, in common with other examples of oscillating systems you may have studied, the amplitude of the rotational oscillation decays exponentially as the energy of the system decreases due to damping. Outline how you would verify whether this suggestion is correct.				
		•			
		•			
		•			
		•			
		•			
		•			
		•			
		•			
		•			
		•			
	(3 marks)			

There are no questions printed on this page

There are no questions printed on this page

Copyright $\ensuremath{\mathbb{C}}$ 2006 AQA and its licensors. All rights reserved.